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[ Silicon photonics technology

= Compatibility with CMOS-based technologies
= Silicon-based modulators, filters and photo-detectors have been demonstrated
= Heterogeneous integration of Ill/V materials

-~ Integrated transceivers with reduced footprint and low power consumption

] Silicon based WDM transmitter

= Frequency comb generated by a Fabry-Perot mode-locked laser (FP-MLL)

= Array of silicon modulators

Mode partition noise (MPN) limitation
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Mode partition noise

The optical power in one mode fluctuates much more than the total power

Optical modes compete with each other for a common injected carrier population
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Mode partition noise

= The optical power in one mode fluctuates much more than the total power
= Optical modes compete with each other for a common injected carrier population
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Mode partition noise

= The optical power in one mode fluctuates much more than the total power
= Optical modes compete with each other for a common injected carrier population
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1) Serial ring resonators based WDM transmitter

2) New approach to mitigate mode partition noise
© Balanced detection
©  Manchester encoding

3) Experimental setup

4) Comparison between NRZ and Manchester
5) Performance using RIN-emulated source

6) Conclusions




WDM transmitters

1 Common WDM architecture
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WDM transmitters

d Quantum-dash MLL (QD-MLL) based transmitter
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WDM transmitters

d Quantum-dash MLL (QD-MLL) based transmitter

Datal

100 GHz channel spacing — =
0 / SOA — \

Channel# 12 34 56 7 8 910 S —
~

N
=)

Data 2

Ny
(=1

\
* Nl

SOA

~———

&
S

A
)

Power (dBm)

o s>
l

o
<}

U U U U DataN
Y
71%45 V1V5§8elength 2?1?3) 1560 \ /

= Use of saturated SOA to mitigate the MPN [M. Gay et al., Tu2H.5, OFC 2014]




WDM transmitters

d Quantum-dash MLL (QD-MLL) based transmitter
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= Use of saturated SOA to mitigate the MPN [M. Gay et al., Tu2H.5, OFC 2014]
A Focus on serial ring resonators based transmitter
= Each MRR modifies the intensity of a single line [Q. Xu et al., 9431, Opt. Express 2015]
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Mitigation of mode partition noise

(1 Balanced detection

Input signal ( PR EIJ_tlarllaey .;SZ_F WOutputRFLsignal
\ A

= Reduction of MPN impact for analogue links [A. Joshi et al., 5814, SPIE 2005]

= Not compatible with non-return to zero (NRZ) modulation
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Mitigation of mode partition noise

(1 Balanced detection
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= Reduction of MPN impact for analogue links

[A. Joshi et al., 5814, SPIE 2005]

= Not compatible with non-return to zero (NRZ) modulation

d Manchester encoding
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encoding
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- Compatible with balanced detection

= The spectral content is shifted towards high frequencies -

=  Doubled bandwidth with respect to NRZ
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Experimental setup

ﬂ NRZ / Manchester

QD- ~_, —
o H >3

EDFA OBPF MZM

NRZ 7 BER

A
= .
EDFA OBPF 8 112 ;g C[?F'T: BER

Manchester receiver

» 10 highest OSNR modes of the QD-MLL are considered
» Pseudo-random binary sequence length: 231-1
» Bitrate per mode: 10 Gb/s

» External cavity laser (ECL) used as reference
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NRZ with single ended-detection
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» More than 2 dB penalty for the best mode at a BER of 10-°
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NRZ with single ended-detection
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» More than 2 dB penalty for the best mode at a BER of 10-°
» Large dispersion of the BER performance
» BER floors as high as 10




Manchester encoding with balanced detection
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» Improvement of the BER performance

» Less than 2 dB penalty at a BER of 10 for
the worst mode

» BER floors appear below 1010

- At this stage, it is still not clear whether the balanced detection or the use of
Manchester encoding is responsible of this improvement

- Need for an optical source with adjustable RIN behavior




How to emulate the RIN?

= An arbitrary waveform generator (AWG) generates the low-frequency part of the

RIN
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= An amplified spontaneous emission (ASE) source generates the constant level of
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BER for different RIN levels: balanced detection
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- Increasing the RIN level slightly decreases the balanced detection sensitivity
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BER for different RIN levels: single ended-detection
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BER performance with single ended-detection for
NRZ and Manchester encoding
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- Introducing Manchester encoding is not sufficient to provide better performance than NRZ
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Conclusions

=  WDM transmitters based on a QD-MLL and a serial array of of ring resonators

= Mitigation of MPN using Manchester encoding and balanced detection
= 10 modes modulated at 10 Gb/s are used to demonstrate the approach
= Effectiveness even at high RIN levels

= Manchester encoding alone is unable to provide better performance than NRZ

= benefit essentially stems from balanced detection
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