

Mitigation of Mode Partition Noise in Quantum-dash Fabry-Perot Mode-locked Lasers using Manchester Encoding

Mohamed Chaibi*, Laurent Bramerie, Sébastien Lobo,
Christophe Peucheret

*chaibi@enssat.fr

FOTON Laboratory, CNRS UMR 6082, University of Rennes 1, ENSSAT, 22300 Lannion, France

Motivation

- ☐ Silicon photonics technology
 - Compatibility with CMOS-based technologies
 - Silicon-based modulators, filters and photo-detectors have been demonstrated
 - Heterogeneous integration of III/V materials
 - → Integrated transceivers with reduced footprint and low power consumption
- ☐ Silicon based WDM transmitter
 - Frequency comb generated by a Fabry-Perot mode-locked laser (FP-MLL)
 - Array of silicon modulators

Mode partition noise (MPN) limitation

Mode partition noise

- The optical power in one mode fluctuates much more than the total power
- Optical modes compete with each other for a common injected carrier population

Mode partition noise

- The optical power in one mode fluctuates much more than the total power
- Optical modes compete with each other for a common injected carrier population

Mode partition noise

- The optical power in one mode fluctuates much more than the total power
- Optical modes compete with each other for a common injected carrier population

Outline

- 1) Serial ring resonators based WDM transmitter
- 2) New approach to mitigate mode partition noise
 - Balanced detection
 - Manchester encoding
- Experimental setup
- 4) Comparison between NRZ and Manchester
- 5) Performance using RIN-emulated source
- 6) Conclusions

□ Common WDM architecture

- Bulky structure
- ➤ Need for line-by-line frequency control

☐ Quantum-dash MLL (QD-MLL) based transmitter

□ Quantum-dash MLL (QD-MLL) based transmitter

Use of saturated SOA to mitigate the MPN

[M. Gay et al., Tu2H.5, OFC 2014]

□ Quantum-dash MLL (QD-MLL) based transmitter

Use of saturated SOA to mitigate the MPN

[M. Gay et al., Tu2H.5, OFC 2014]

□ Focus on serial ring resonators based transmitter

Each MRR modifies the intensity of a single line [Q. Xu et al., 9431, Opt. Express 2015]

Mitigation of mode partition noise

■ Balanced detection

- Reduction of MPN impact for analogue links
- [A. Joshi et al., 5814, SPIE 2005]
- Not compatible with non-return to zero (NRZ) modulation

Mitigation of mode partition noise

■ Balanced detection

- Reduction of MPN impact for analogue links
- [A. Joshi et al., 5814, SPIE 2005]
- Not compatible with non-return to zero (NRZ) modulation
- Manchester encoding

→ Compatible with balanced detection

→ Combining balanced detection and Manchester encoding to mitigate MPN

Experimental setup

- ➤ 10 highest OSNR modes of the QD-MLL are considered
- Pseudo-random binary sequence length: 2³¹-1
- Bitrate per mode: 10 Gb/s
- > External cavity laser (ECL) used as reference

NRZ with single ended-detection

➤ More than 2 dB penalty for the best mode at a BER of 10⁻⁹

NRZ with single ended-detection

- ➤ More than 2 dB penalty for the best mode at a BER of 10⁻⁹
- ➤ Large dispersion of the BER performance
- ➤ BER floors as high as 10⁻⁴

Manchester encoding with balanced detection

- > Improvement of the BER performance
- ➤ Less than 2 dB penalty at a BER of 10⁻⁹ for the worst mode
- ➤ BER floors appear below 10⁻¹⁰

- → At this stage, it is still not clear whether the balanced detection or the use of Manchester encoding is responsible of this improvement
- → Need for an optical source with adjustable RIN behavior

How to emulate the RIN?

- An arbitrary waveform generator (AWG) generates the low-frequency part of the RIN
- An amplified spontaneous emission (ASE) source generates the constant level of the RIN

How to emulate the RIN?

- An arbitrary waveform generator (AWG) generates the low-frequency part of the RIN
- An amplified spontaneous emission (ASE) source generates the constant level of the RIN

How to emulate the RIN?

- An arbitrary waveform generator (AWG) generates the low-frequency part of the RIN
- An amplified spontaneous emission (ASE) source generates the constant level of the RIN

BER for different RIN levels: balanced detection

→ Increasing the RIN level slightly decreases the balanced detection sensitivity

BER for different RIN levels: single ended-detection

→ Introducing Manchester encoding is not sufficient to provide better performance than NRZ

Conclusions

- WDM transmitters based on a QD-MLL and a serial array of of ring resonators
- Mitigation of MPN using Manchester encoding and balanced detection
- 10 modes modulated at 10 Gb/s are used to demonstrate the approach
- Effectiveness even at high RIN levels
- Manchester encoding alone is unable to provide better performance than NRZ
 - ⇒ benefit essentially stems from balanced detection

Acknowledgements

Funded by the European Union

Energy efficient silicon transmitter using heterogeneous integration of III-V quantum dot and quantum dash materials

